
AbstractALM www.abstractalm.org
Page 1

AbstractALM

Framework

Version 1.0

Author: Michael Olschimke (michael@olschimke.eu)

Table of Contents

Introduction... 3

The Problem .. 3

The Solution ... 4

Connections ... 6

Connection Strings ... 6

Common Parameters ... 6

Objects .. 7

User ... 7

Attributes ... 7

Methods .. 8

Data Definition ... 8

Property... 9

Attributes ... 9

Data Definition ... 9

Repository ... 10

Attributes ... 10

Methods .. 10

Data Definition ... 11

Package ... 12

mailto:michael@olschimke.eu

AbstractALM www.abstractalm.org
Page 2

Attributes ... 12

Methods .. 12

Data Definition ... 12

Artifact... 13

Attributes ... 13

Data Definition ... 13

Attachment .. 14

Attributes ... 14

Data Definition ... 14

Folder .. 15

Attributes ... 15

Data Definition ... 15

File ... 16

Attributes ... 16

Data Definition ... 16

AbstractALM www.abstractalm.org
Page 3

Introduction

The Problem

Today, there is a variety of version control (VC), software configuration management (SCM), and
application lifecycle management (ALM) tools available. Each system has unique features and addresses
unique clients. Therefore, each solution provides a unique SDK for integration with other tools in the
lifecycle, such as IDEs. To take advantage of all the features that are provided by the vendor, the usage of
the SDK is obligatory.

On the other hand, some tool vendors are only using a small subset of the features. For example, a text
editor with ALM integration might only need to check out files from a specific repository, edit the file,
and check it back in. The problem begins if the developer of this editor needs to provide integrations
with various VC / SCM / ALM tools. Since each solution has its own SDK, all SDKs from all solutions to be
supported needs to be integrated into the application.

There is already a partial solution for this problem: Microsoft’s SCC Interface (Microsoft SCCI). The
drawback is that the interface is closed source and all of its components (libraries, documentation) are
only available to Microsoft Visual Studio Partners. In order to get the libraries and documentation, the
signature of a non-disclosure agreement (NDA) is required. Tools based on the SCC interface are not
allowed to publish their source code.

Another problem is SCC’s limitation to version control features. The API is not supporting other artifacts
of the software development lifecycle, such as change requests, requirements, etc.

AbstractALM www.abstractalm.org
Page 4

The Solution

AbstractALM tries to solve the problems introduced with Microsoft’s SCC interface:

 It is Open Source (published under the LGPL), therefore not requiring a NDA, but also not
requiring publishing the source code of the using application. Therefore, it can be used in any
environment, both open source and commercial environments.

 It is available to the public. All documentation, binaries, and source code is available at
www.AbstractALM.org.

 It is open to other artifacts than file revisions. While not implemented yet, AbstractALM can
easily extended to support such artifacts as change requests, requirements, test cases, and
whatever else.

 It is open to other solutions. While the initial release of AbstractALM supports some vendors,
other vendors are encouraged to support AbstractALM by adopting the framework.

In addition, AbstractALM is platform and language independent. This is reached by various abstractions
of the framework:

1. AbstractALM Framework (this
document)
The framework defines what
AbstractALM is, which artifacts and
features are supported by
AbstractALM, etc.

2. AbstractALM Adoption
For each supported proprietary
solution, another document is
required. The document describes
how the AbstractALM is adopted to
the solution, e.g. how artifacts are
mapped to the proprietary artifacts.

3. AbstractALM Library
The AbstractALM is a
language/platform dependent
implementation of all required
interfaces. For example, the Java
interface IFile is part of the
AbstractALM Java Framework.

4. AbstractALM Implementation
The vendor-specific implementation
of the AbstractALM Framework. It
contains adapters to access the
vendor library, classes to connect to
the repository, etc.

5. Unit tests for implementations
complete the framework.

AbstractALM

Framework

AbstractALM

C++ Library

AbstractALM

Dimensions

Adoption
AbstractALM

Harvest

Adoption
AbstractALM

StarTeam

Adoption
AbstractALM

SubVersion

Adoption

AbstractALM

.NET Library

AbstractALM

Java Library

AbstractALM

Dimensions

Implementation

for Java

AbstractALM

Harvest

Implementation

for Java

AbstractALM

StarTeam

Implementation

for Java

AbstractALM

SubVersion

Implementation

for Java

http://www.abstractalm.org/

AbstractALM www.abstractalm.org
Page 5

However, AbstractALM is not replacing the vendor-specific, proprietary SDK:

 AbstractALM is only a very limited subset of the SDK. Its goal is to abstract very common
features, such as the check-in and check-out process of specific artifacts.

 AbstractALM is only supporting very limited administrative features, such as creating new users.
Since the architecture of SCM solutions is very different, it is not possible to manage projects,
views, processes, etc.

In fact, AbstractALM is still using the vendor SDK.
The library uses the vendor-specific SDK to access
the SCM solution and execute operations as
required by AbstractALM. The library also provides
access to the instance of the SDK
(Connection.NativeSDKObject), therefore providing
both an abstract interface for common tasks and a
native interface for vendor-specific tasks. Vendor SDK

AbstractALM Library

AbstractALM Implementation

Application

The degree of which the application uses the vendor SDK depends on the functionality and the
application’s level of abstraction.

AbstractALM www.abstractalm.org
Page 6

Connections

Each implementation shall provide a driver to connect to the SCM solution. The driver is instantiated by a
connection manager in the library. Since every SCM solution requires different connection parameters
(such as host, port, protocol, project, view, package, repository, folder, etc.) the driver shall use
connection strings to identify the desired artifact location.

Connection Strings

A connection string has the following general format:

alm://driver-ident/driver-specific/driver-specific?param=value¶m=value

The following table describes the sections of the connection string in detail:

Part Description
alm:// Indicates that the string is an AbstractALM connection string; obligatory
driver-ident Identifies the driver to use. The identification is language and platform

dependent. For example, it could be the name of a DLL, assembly, or Java
package. There is only one driver-ident section.
Example: org.abstractalm.subversion

driver-specific Identifies the artifact location. There can be multiple driver-specific sections.
Example: svn-server:1234/calcApp/trunk

param=value Additional parameters required for connection. Each connection string can have
multiple parameters. Each parameter is uniquely identified (using the text
param) and has exactly one value.
Example: user=olschimke&password=blah

The complete string could look like this:

alm://org.abstractalm.subversion/svn-server:1234/calcApp/trunk?user=olschimke&password=blah

Common Parameters

The following table lists common parameters:

Name Description
user The name of the user to connect with.
password The password of the user to connect with.

Common parameters are also available as properties in the driver manager, for example to securely set
the password of the connection.

AbstractALM www.abstractalm.org
Page 7

Objects

This section describes the objects (such as the artifacts) that are supported by the framework. Each
object contains of 4 parts:

1. A reference to the native SDK object. If there is no native SDK object, this reference might be
null. This reference is untyped, e.g. of type java.lang.Object.

2. Required properties: these properties are required by the framework. Each implementation
must provide values for required properties.

3. Optional (but common) properties: these properties are not required by the framework. Not all
SCM solutions support those properties. If the solution supports it, the framework provides the
value. Otherwise, it tries to find an associated custom property value. If this fails as well,
accessing the value raises an exception (‘not implemented’).

4. Custom properties: these properties are specific to individual SCM solutions. Also the user of the
SCM solution might add user defined properties. An array provides these properties.

Associated custom property values store a value for the AbstractALM Attribute. They are named like the
AbstractALM value and a namespace. For example: if company is not supported by the native SDK, but it
allows custom properties, it creates a custom property ALM:Company or ALM-Company or
ALMCompany. This custom property is used to map the AbstractALM attribute to.

Libraries implement these objects by providing interfaces (if available) or abstract classes.
Implementations provide adapter classes that implement the interfaces or extend the abstract classes.

User

This object contains all available information about a user of the SCM solution. Users are not versioned.

Attributes

Attribute Name Data Type Attribute Type Description

NativeObject Object Optional The native object from the vendor SDK. This is an
untyped object, e.g. of type java.lang.Object.

ID String Required A system wide unique ID of the user. Could be the
login name, email address, primary key of the
database table, etc. The value becomes part of the
user’s URI.

Login String Required The login name of the user.

Active Boolean Required Indicates if the account is active (usable). If this
value is false, the user is not able to log into the
system using this account. If the field is not
available in the adopting SCM system, this value
might be just true, indicating that every available
user is active.

Name String Optional The full name (first + last name) of the user.

Company String Optional The name of the company.

Email String Optional The email address of the user.

PhoneNumber String Optional The phone number of the user.

MobileNumber String Optional The mobile phone number of the user.

FaxNumber String Optional The fax number of the user.

AbstractALM www.abstractalm.org
Page 8

PagerNumber String Optional The pager number of the user.

WebSite String Optional The URL of the user’s web site. Includes the
protocol such as http://www.olschimke.eu.

TimeZoneShift Integer Optional The time zone shift of the user.

PostalAddress String Optional The postal address of the user.

VoiceMailNumber String Optional The voice mail number of the user.

IMNumber String Optional The number of an instant messaging service, such
as MSN or ICQ.

Language String Optional The language of the user. The format follows TBW.

CreatedDate DateTime Optional The date and time the user was created.

CustomProperties Collection
(Property)

Optional The custom properties for the user.

Connection Connection Required The connection (server) this user is stored at. Is
defined in the library.

CreatedUser User Optional The user (administrator) who has created the user.

ChangedDate DateTime Optional The date and time the user was updated the last
time.

ChangedUser User Optional The user who has changed the user the last time.

Description String Optional A description for the user.

Methods

TBW: Save

Data Definition

User = [NativeObject] + ID + URI + [NativeURI] + Login + Active + [Name] + [Company] + [Email]
+ [PhoneNumber] + [MobileNumber] + [FaxNumber] + [PagerNumber] + [WebSite]
+ [TimeZoneShift] + [PostalAddress] + [VoiceMailNumber] + [IMNumber] + [Language]
+ [CreatedDate] + 0[Property]*

AbstractALM www.abstractalm.org
Page 9

Property

Represents a custom value. The library could define multiple properties, for various value data types
(such as IntegerProperty with a value attribute of int, StringProperty with a value attribute of string,
etc.). There should be properties for the following datatypes:

 Integer numbers

 Float numbers

 Strings

 Dates and Times

 Enumerations

 User

 Boolean
 Objects (as defined in AbstractALM: User, Repository, Package, Artifact, Folder, File)

The type of the property should be retrieved using language features, such as the instanceof statement.

Attributes

Attribute Name Data Type Attribute Type Description

NativeObject Object Optional The native object from the vendor SDK. This is an
untyped object, e.g. of type java.lang.Object.

ID String Required A system wide unique ID of the property. Could be
the property name (if unique), path, primary key of
the database table, etc. The value becomes part of
the repository’s URI.

Name String Required The name of the property.

Value Variant Optional The value of the property.

CreatedBy User Optional The user who has created the value (not the
property).

CreatedDate DateTime Optional The date and time the value was created.

ChangedBy User Optional The user who has changed the value the last time.

ChangedDate DateTime Optional The date and time the value was changed the last
time.

Description String Optional The description of the property.

Data Definition

Property = [NativeObject] + ID + URI + [NativeURI] + Name + [Value]

AbstractALM www.abstractalm.org Page
10

Repository

This is the repository where the file revisions are stored. It is actually not the folder but a more abstract
‘location’ like a project, view, or repository path. The repository has one root folder. This root folder
provides access to the file revisions. The repository provides access to meta-information, such as the
description.

Attributes

Attribute Name Data Type Attribute
Type

Description

NativeObject Object Optional The native object from the vendor SDK. This is an
untyped object, e.g. of type java.lang.Object.

ID String Required A system wide unique ID of the repository. Could
be the repository name (if unique), path, primary
key of the database table, etc. The value becomes
part of the repository’s URI.

Name String Optional The name of the repository. Could be the product
or project name. Does not need to be unique.

Description String Optional A description for the repository.

CustomProperties Collection
(Property)

Optional The custom properties for the repository.

CreatedDate DateTime Optional The date and time the repository was created.

CreatedUser User Optional The user who has created the repository.

Packages Collection
(Package)

Required All currently active and applied / past packages.
The package does not contain any artifacts as long
as not checked out.

RootFolder Folder Required The root folder of the repository.

DerivedRepositories Collection
(Repository)

Optional All derived (branches) of this repository.

Connection Connection Required The connection this repository is using. Comes
from the library.

Project String Optional The name of the project this repository belongs to.
The project can be retrieved using the native object
only.

ChangedDate DateTime Optional The date and time the repository was changed the
last time.

ChangedUser User Optional The user who has changed the repository the last
time.

Methods

Method Name Parameter Param Type Description

CheckOut Result Package Checks out all artifacts of a package.

 Package Package The package to be checked out.

 Lock Boolean Indicates if the files should be locked on the system
(if supported).

CheckIn Checks in the artifacts of the package.

 Package Package The package to be checked in.

 Description String A comment to be used for the change log. If this

AbstractALM www.abstractalm.org Page
11

value is not set or empty, the package comment is
used.

Data Definition

Repository = [NativeObject] + ID + URI + [NativeURI] + [Name] + [Description]
+ 0[Property]* + CreatedDate + 0[Package]* + Folder

AbstractALM www.abstractalm.org Page
12

Package

A package is used to check-in files in an atomic transaction. Packages are also used to get information
about transactions run in the past.

Attributes

Attribute Name Data Type Attribute Type Description

NativeObject Object Optional The native object from the vendor SDK. This is an
untyped object, e.g. of type java.lang.Object.

ID String Required A system wide unique ID of the package. Could be
the package name (if unique), path, primary key of
the database table, etc. The value becomes part of
the repository’s URI.

Name String Optional The name of the package.

Description String Optional A description for the package. Should be the check-
in comment if appropriate.

Artifacts Collection
(Artifact)

Required All artifacts of the package.

ParentRepository Repository Required The repository this package belongs to.

CustomProperties Collection
(Property)

Optional Custom properties for this package.

CreatedUser User Optional The user who has initiated the package /
transaction.

CreatedDate DateTime Optional The date and time the package / transaction was
initiated.

Repository Repository Required The repository this package belongs to.

Methods

Method Name Parameter Param Type Description

CheckOut Checks out all artifacts of a package from the
currently assigned repository.

 Lock Boolean Indicates if the files should be locked on the system
(if supported).

CheckIn Checks in the artifacts of the package into the
currently assigned repository.

 Description String A comment to be used for the change log. If this
value is not set or empty, the package comment is
used.

Data Definition

Package = [NativeObject] + ID + URI + [NativeURI] + Name + Description + Artifacts + Repository +
0[Property]*

AbstractALM www.abstractalm.org Page
13

Artifact

Represents an artifact stored in the project.

Attributes

Attribute Name Data Type Attribute Type Description

NativeObject Object Optional The native object from the vendor SDK. This is an
untyped object, e.g. of type java.lang.Object.

ID String Required A system wide unique ID of the artifact. Could be
the artifact name (if unique), path, primary key of
the database table, etc. The value becomes part
of the artifact’s URI.

Name String Optional The name of the artifact.

Description String Optional A description for the artifact.

Comment String Optional A comment for the revision.

Attachments Collection
(Attachment)

Optional An optional collection of attachments (files).

CustomProperties Collection
(Property)

Optional An optional collection of custom properties.

CreatedUser User Optional The user who has created the first revision of this
artifact.

CreatedDate DateTime Optional The date and time the first revision of this artifact
was created.

ChangedUser User Optional The user who has changed this revision of the
artifact.

ChangedDate DateTime Optional The date and time this revision of the artifact was
changed.

History Collection
(Artifact)

Optional The previous artifact revisions.

RevisionNumber Int Optional The revision number of the artifact revision.

VersionNumber String Optional The version number of the artifact revision in dot
notation.

ParentFolder Folder Required The folder where the artifact revision is stored.

Repository Repository Required The repository the artifact is stored in.

Data Definition

Artifact = [NativeObject] + ID + URI + [NativeURI] + Name + Description + 0[Attachment]*
+ 0[Property]* + CreatedUser + CreatedDate + ChangedUser + ChangedDate +
0[Artifact]* + RevisionNumber + ParentFolder + ParentRepository

AbstractALM www.abstractalm.org Page
14

Attachment

An attachment is a file that has been attached to an artifact.

Attributes

Attribute Name Data Type Attribute Type Description

NativeObject Object Optional The native object from the vendor SDK. This is an
untyped object, e.g. of type java.lang.Object.

ID String Required A system wide unique ID of the attachment.
Could be the file name (if unique), path, primary
key of the database table, etc. The value becomes
part of the attachment’s URI.

Name String Required The file name of the attachment.

Description String Optional A description for the attachment.

Content Stream Required The file content of the attachment.

Repository Repository Required The repository this attachment belongs to.

CreatedUser User Optional The user who has created the attachment.

CreatedDate DateTime Optional The date and time the attachment was created.

ChangedUser User Optional The user who has changed the attachment the
last time.

ChangedDate DateTime Optional The date and time the attachment was changed
the last time.

Data Definition

Attachment = [NativeObject] + ID + URI + [NativeURI] + Name + [Description] + Content

AbstractALM www.abstractalm.org Page
15

Folder

A folder is an artifact that can contain other artifacts.

Attributes

Attribute Name Data Type Attribute Type Description

Same as Artifact

Artifacts Collection
(Artifact)

Optional The sub artifacts.

Data Definition

Folder = Artifact + 0[Artifact]*

AbstractALM www.abstractalm.org Page
16

File

A file is an artifact that has content, such as source code, or binary data.

Attributes

Attribute Name Data Type Attribute Type Description

Same as Artifact

Content Stream Required The file contents.

Data Definition

File = Artifact + Content

